ar X iv : 0 90 6 . 51 40 v 1 [ m at h . A P ] 2 8 Ju n 20 09 WELL - POSEDNESS FOR FRACTIONAL NAVIER - STOKES EQUATIONS IN CRITICAL SPACES

نویسنده

  • ZHICHUN ZHAI
چکیده

In this paper, we prove the well-posedness for the fractional NavierStokes equations in critical spaces G −(2β−1) n (R ) and BMO−(2β−1)(Rn). Both of them are close to the largest critical space Ḃ −(2β−1) ∞,∞ (R ). In G −(2β−1) n (R ), we establish the well-posedness based on a priori estimates for the fractional Navier-Stokes equations in Besov spaces. To obtain the well-posedness in BMO−(2β−1)(Rn), we find a relationship between Q α;∞ (R ) and BMO(R) by giving an equivalent characterization of BMO(R).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 6 . 30 92 v 1 [ m at h . A P ] 1 7 Ju n 20 09 WELL AND ILL - POSEDNESS ISSUES FOR ENERGY SUPERCRITICAL WAVES

We investigate the initial value problem for some energy supercritical semilinear wave equations. We establish local existence in suitable spaces with continuous flow. We also obtain some ill-posedness/weak ill-posedness results. The proof uses the finite speed of propagation and a quantitative study of the associated ODE. It does not require any scaling invariance of the equation.

متن کامل

ar X iv : 0 90 6 . 33 09 v 1 [ m at h . A P ] 1 8 Ju n 20 09 ricci flow of negatively curved incomplete surfaces

We show uniqueness of Ricci flows starting at a surface of uniformly negative curvature, with the assumption that the flows become complete instantaneously. Together with the more general existence result proved in [10], this settles the issue of well-posedness in this class.

متن کامل

ar X iv : 0 90 7 . 41 78 v 1 [ m at h . PR ] 2 3 Ju l 2 00 9 An Introduction to Stochastic PDEs

2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ar X iv : 0 90 9 . 21 26 v 1 [ m at h . N A ] 1 1 Se p 20 09 Approximation of Bayesian Inverse Problems for PDEs

Inverse problems are often ill-posed, with solutions that depend sensitively on data. In any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well-posedness for inverse problems, at th...

متن کامل

Well-posedness for fractional Navier–Stokes equations in the largest critical spaces

and P is the Helmholtz–Weyl projection onto divergence free vector fields: P D fPj,kgj,kD1, ,n D fıj,k C RjRkgj,kD1, ,n where ıj,k is the Kronecker symbol and Rj D @j. 4/ 1=2 are the Riesz transforms. An important property of the fractional Navier–Stokes equations is its invariance under the following time and space scaling: u .t, x/D 2ˇ 1u. 2ˇ t, x/, p .t, x/D 4ˇ 2p. 2ˇ t, x/, .u0/ .x/D 2ˇ u0....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009